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1. INTRODUCTION

A considerable amount of information has been published concerning the mechanisms and

products of the thermal decomposition of the nitramines cyclotrimethylene trinitramine (RDX)

and cyclotetramethylene tetranitramine (HMX). Fifer (1984) and Schroeder (1985, 1988) are

useful reviews of the literature. Until recently, these studies primarily involved measurement

only of the permanent gases (C0 2 , NO2, NO, CH2O, HCN, N20, N2, etc.) in the products, or

involved mass spectral studies under vacuum conditions where it is difficult to distinguish

pyrolysis from ionization-induced fragmentation of vaporized nitramine molecules. During the

last several years, two developments have led to the identification of larger fragments in the

pyrolysis products. One is the application of fused silica capillary column gas chromatography

(GC) techniques (Fifer et al. 1986; Schroeder 1987). The other involves new mass spectral

techniques involving time-of-flight measurements to determine the parent peak leading to each

ion fragment (Behrens 1987; Zhoa, Hintsa, and Lee 1988) or employing atmospheric pressure

chemical ionization and tandem mass spectrometric techniques to minimize vaporization and

provide information on the structures of observed product masses (Snyder et al. 1990).

The majority of the published studies have concentrated on the development of

mechanisms to explain the formation of the observed decomposition products. There have

been very few attempts to correlate pyrolysis product distributions with large-scale

performance tests such as ignitability, impact sensitivity, or bum rate. Since definitive

mechanistic information has not been forthcoming for the nitramines and nitramine propellants,

the search for correlations may be a more fruitful approach. Mechanisms are not required,

only a correlation of one or more features in the pyrolysis product distributions with the

performance property of interest. Once such a correlation is found, the pyrolysis

measurement becomes a small-scale screening test for the desired performance property, one

that perhaps does not require fabrication on a large scale, or that might require only

unprocessed mixtures of potential ingredients. Also, the correlation may suggest rules that

can be used in expert systems for computer assisted formulations design and properties

prediction (Morris and Fifer 1990). Correlating pyrolysis product distributions with performance

is analogous to reported correlations between Low Vulnerability Ammunitions (LOVA)

propellant sensitivity with binder/acid DSC decompositir'n temperature (Wise and Rocchio

1981; Salo 1988). The information content in a product distribution measurement, where
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perhaps 15 or 20 products are measured, is much greater than in a thermokinetic

measurement where only a single property (e.g., decomposition temperature) is measured, so

there should be an even greater likelihood of finding a useable correlation.

The principle reason why pyrolysis-performance correlations have not been attempted is

that a suitable series of systematically varied propellant formulations, with properly

documented performance measurements, has not been available. Such a LOVA formulation

series has been developed at the Naval Weapons Center (NWC), China Lake, CA, by

Dr. Rena Yee (1985; 1988; 1987) who provided both samples and performance test data for

this study. In the formulation series, oxidizer and binder were systematically varied.

Performance test results include bum rate, impact sensitivity, and time-to-ignition for radiative

heating (C02 laser, 10.6 gm). This formulation series contains either RDX or HMX as the

oxidizer and one of the following polymers: hydroxy-terminated polybutadiene (HTPB),

glycidyl azide polymer (GAP), 3,3-bis-azidomethyl oxetane/tetrahydrofuran (BAMO/THF)

copolymer, or 3,3-bis-azidomethyl oxetane/3,3-bis-azidomethyl-3-methyl oxetane

(BAMO/AMMO) copolymer. The azido polymers were plasticized with either trimethylolethane

trinitrate (TMETN) or 1,2,4-butane trinitrate (BTTN). The composition of each formulation is

given in Table 1. Samples of HMX, RDX, GAP, HTPB, and plasticizers were also analyzed.

Although the initial purpose of this investigation was to identify correlations between

pyrolysis product distributions and ignition times (Shaw and Fifer 1988), several other trends

related to propellant formulation were observed and will also be discussed in this report. The

sample set provided the opportunity to observe not only the correlations of pyrolysis product

distribution with radiative ignition time, but also the effect of formulation on pyrolysis product

distribution. It is hoped that the results of this investigation will be useful to those interested in

propellent design and performance prediction.

2. EXPERIMENTAL

All samples were pyrolyzed using a Chemical Data Systems (CDS) Model 122 Pyroprobe

connected via a heated interface chamber to the injector of a Hewlett-Packard 5965 GC-FTIR

equipped with a capillary column and liquid nitrogen cooled Mercury Cadmium Telluride (MCT)

detector (Hewlett-Packard Model 5965A infrared detector).
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Table 1. Composition of Propellant Formulations (in weight-percent)

Sample RDX HMX Polymer" Polymer Plasticizer Plasticize
IIType Type

4 74.8 0.0 6.3 GAP 18.9 TMETN

8 68.4 0.0 31.6 GAP 0.0

9 65.9 0.0 11.5 GAP 22.6 BTTN

14 0.0 69.7 30.3 GAP 0.0

15 0.0 0.0 50.0 GAP 50.0 BTTN

16 75.0 0.0 25.0 HTPB 0.0 -

17 0.0 76.0 24.0 HTPB 0.0

18 0.0 0.0 50.0 GAP 50.0 TMETN

19 65.0 0.0 17.5 GAP 17.5 BTTN

20 0.0 66.3 16.8 GAP 16.9 BTTN

21 0.0 67.6 16.2 BAMOITHF 16.2 BTTN

22 0.0 68.2 15.9 BAMO/AMMO 15.9 TMETN

23 0.0 68.6 15.7 BAMO/THF 15.7 TMETN

24 0.0 68.3 15.8 GAP 15.9 TMETN

25 67.1 0.0 16.5 GAP 16.4 TMETN

"Includes curing agent.

The pyrolysis sample (ca. 1 mg) was placed in a quartz tube and held in place with glass

wool. The tube was then inserted into a coil-type Pyroprobe. The probe was inserted into the

heated interface which was continuously being swept with carder gas. Once enough time had

elapsed to allow the carrier gas to sweep all air from the interface compartment and to allow

the sample to reach thermal equilibrium, the sample was flash heated to the pyrolysis

temperature and held at that temperature for 20 s. The pyrolysis products then passed

through the splitless injector into the capillary column, which separated the products for

detection and identification. As each component eluted from the capillary column, it passed

through a light pipe in the beam of an interferometer for spectroscopic analysis by Fourier

transform infrared (FTIR) spectroscopy. Table 2 lists the pyrolytic, chromatographic, and

spectroscopic conditions for the experiments. Figure 1 shows a schematic representation of

the apparatus.
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Table 2. Pyrolytic, Chromatographic, and Spectrographic Conditions

Pyroprobe and Interface parameters:
Interface temperature 1000 C
pyrolysis temperature 4000 C, 5000 C, 1,0000
heating mode °C flash heating
heating time 20 s
sample size ca. Img
configuration quartz sample tube

In coil-type probe

GC oven/column parameters:
initial temperature 500 C
initial hold time 3 min
heating rate 10 deg/min
final temperature 200° C
final hold time 5 min
injection port temperature 2000 C
light pipe temperature 2500 C
transfer line temperature 250° C
column 0.32 mm x 25 m

OV-17, 3-Ium film
Quadrex Corp.

FTIR parameters:
detector MCT, narrow band
resolution 3 cn"1

scan rate 3 scans/s

Each of the samples was pyrolyzed at both a low and high temperature. For the low

temperature experiments, RDX formulations and formulations of GAP/plasticizer

(samples 15 and 18) were pyrolyzed at 4000 C, while HMX formulations were pyrolyzed at

5000 C. For the high temperature experiments, all samples were pyrolyzed at 1,0000 C. Low

temperature experiments were not carried out for GAP and HTPB because of their thermal

stability. Thermocouple measurements indicated that the actual temperatures experienced by

samples in the quartz tubes were 150-200° C lower than the pyroprobe set temperatures.

The low temperature experiments were, therefore, just above the melting points of RDX and

HMX (2040 C and 2800 C, respectively). Three experiments were carried out for each of the

samples at each of the two temperatures to insure reproducibility.
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Figure 1. Schematic Representation of GC-FTIR Apparatus.

Gas chromatograms were generated by application of the Gram-Schmidt algorithm to the

FTIR detector output (Griffiths and Haseth 1986). Peaks were then identified by examination

of the associated FTIR spectra. A small fraction of the peaks was directly identified by an

automated search of the Environmental Protection Agency (EPA) library of vapor phase

spectra. Software for this search was provided by the manufacturer.

Retention times were corrected to give the permanent gas peak at 0.0 min. Quantification

of pyrolysis products was based on GC peak areas and is reported in area percent in

Tables 3, 4, 5, and 6. Exceptions to this are the individual permanent gas products which are

not readily quantified by GC peak area because they elute within a few seconds of each other

and appear as a single GC peak. For this reason, individual permanent gas quantities were

calculated from FTIR absorbance and are given in normalized absorbance units (Tables 7

and 8). To calculate these normalized absorbance values, all FTIR spectra under the

permanent gas GC peak were first summed to yield a single spectrum. The absorbance of

the largest band for each permanent gas in this spectrum was then divided by the sum of the

absorbances of the largest band for each gas. The bands chosen for each gas are given as

follows: CH4, 3,016 cm1 ; CH20, 2,084 cm"; C02, 2,363 cm-; N20, 2,238 cm';

CO, 2,111 cm-; and NO, 1,912 cm". A typical permanent gas FTIR spectrum is given in

Figure 2.
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Figure 2. ToIcal FTIR Soectrum of Permanent Gas Pyrolysis Products.

It must be strewsed that all reported values are uncalibrated, relative quantities that are

only used to identify variations in pyrolysis product distributions. Magnitudes of absorbance,

as well as GO peak areas, for different compounds are not comparable due to differences in

infrared absorption coefficients.

Although the data reported here represent one of the most comprehensive investigations

of pyrolysis product distribution for propellant formulations to date, several products are

notably absent. Most of these products reacted before reaching the light pipe, and, therefore,

could not be detected. These include highly reactive species such as NO2 , radicals, and ions.

Other species such as N2 and H2 do not absorb in the infrared region, and, therefore, were not

detected. In spite of this drawback, pyrolysis GC-FTIR is superior to the more commonly

used GC-MS methods, with which no analysis of the permanent gases would be possible with

normal unit mass resolution (unless multiple column techniques were used to permit

separation of the permanent gases, as well as the larger fragments). The reason for this is

that there are a number of unfortunate coincidences in the ion fragment patterns for many of

the commonly observed permanent gases. For example, m/z 28 could be CO or N2, m/z 30

could be CH2O or NO, m/z 44 could be N20 or CO, etc. With GC-FTIR this is not a problem;

most of the gases have more than one absorption band, and for each gas there is at least

one IR band for which there is no interference from other species.
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3. RESULTS

3.1 Pyrolysis Product Distributions. The primary experimental data obtained from these

experiments are GC peak areas. Retention times and FTIR spectra aid in the identification of

pyrolysis products. A typical GC chromatogram and accompanying FTIR spectrum for one of

the peaks in the chromatogram are given in Figures 3 and 4, respectively. Based on such

information, product distributions for 15 different propellant formulations and 4 of the pure

components (RDX, HMX, GAP, and HTPB) have been determined. Pyrolysis products have

been divided into several catagories, i.e., permanent gases (CO2, N20, CO, NO, CH2O, CH4),

HCN, water, carbonyl compounds (amides, ketones, aldehydes, designated simply as OC--=O),

carboxylic acids (RCOOH), nitrates (RNO 3), nitro compounds (RNOJ), and isocyanates

(HNCO, RNCO). Permanent gases and other molecules such as acetone, acrolein,

acetaldehyde, acetic acid, formic acid, and triazine were identified from their FTIR spectra.

Other less readily identifiable products are classified in this report by their functionalities.

Tables 3 and 4 summarize the P-GC-FTIR results for low and high temperature experiments,

respectively. The tables are arranged with formulation numbers across the top of the tables

and retention times down the sides of the tables. To simplify the table, retention times have

been rounded off to the nearest 0.5 min. Values appearing beside each product indicate the

associated GC percent-peak area.

By far, the most abundant pyrolysis products for all formulations are the permanent gases.

The remainder of the products are generated by most or some of the formulations. These

products are carbonyl compounds, triazine, nitro compounds, nitrates, and isocyanates.

Triazine results from incomplete pyrolysis of oxidizer (HMX and RDX). Nitrates are derived

from the energetic plasticizers (BTTN and TMETN). Isocyanates, other than HNCO, are likely

generated from the curing agents isopherone diisocyanate and N-100, which are used to

cross-link HTPB and GAP, respectively.

Pyrolysis experiments were run at two different temperatures, 400/5000 C and 1,0000 C,

which hereafter will be referred to as low temperature and high temperature pyrolysis,

respectively. Tables 5 and 6 summarize GC area-percent values for all low and high

temperature pyrolysis products except individual permanent gas products, which are given in

normalized absorbance units in Tables 7 and 8, respectively.
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Table 5. Pyrolysis Products for Low Temperature Experiments

Sample PG, HCN RNCO and
No. and H20 Triazine RNO2 RNO3 RCOOH HNCO C=-Ob

(GC area-percent)

4 79.8 0.0 0.0 11.3 2.6 1.6 3.4

8 46.7 21.2 0.0 0.0 7.0 4.0 21.2

9 81.0 0.0 7.3 0.4 0.4 1.4 7.6

148 56.2 1.4 7.9 0.0 0.0 0.0 25.8

15 85.0 0.0 0.0 0.0 4.6 1.5 8.6

16 50.6 14.6 5.6 0.0 0.5 0.0 28.8

17 69.2 5.7 5.1 0.0 0.0 0.0 20.0

18 67.1 0.0 1.9 0.0 5.7 5.2 20.2

19 90.6 0.0 0.0 4.5 0.0 2.9 1.3

20 80.7 1.4 0.0 0.0 0.8 0.0 17.2

21 85.0 0.3 0.0 0.0 2.4 0.0 13.3

22 70.0 6.9 0.4 0.0 0.0 0.0 22.0

23 57.2 3.2 0.0 0.0 8.5 0.0 31.1

24 71.3 2.5 0.4 8.2 7.3 0.0 10.6

25 82.8 0.0 0.0 9.7 0.0 5.7 1.8

RDX 29.9 8.1 8.0 0.0 4.6 0.0 49.5

HMX 92.1 2.3 0.0 0.0 0.0 0.0 5.7

"Also gave 7% ether.

bAmides, ketones, and aldehydes.
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Table 6. Pyrolysis Products for High Temperature Experiments

Sample PG, HCN RNCO
No. and H20 Triazine RNO2  RNO 3  RCOOH and COb

HNCO

(GC area-percent)

4 88.9 8.9 0.0 0.0 0.0 0.6 1.6

8 69.8 6.3 3.6 0.0 0.0 0.6 19.8

9 85.9 3.6 0.0 0.0 0.1 1.4 9.0

14 79.1 2.2 0.0 0.0 1.5 0.2 16.5

15 59.6 0.0 0.0 0.0 4.5 8.9 26.9

16 91.6 5.7 0.2 0.0 0.0 0.0 2.0

17 61.4 2.0 4.8 0.0 0.2 0.0 32.8

18 43.7 0.0 4.1 0.0 9.3 8.2 35.1

19 84.2 9.0 0.0 0.0 0.0 1.6 5.2

20 59.4 2.1 0.6 0.0 12.7 0.2 24.3

21 72.8 4.0 0.6 0.0 6.0 0.0 16.4

22 71.0 2.5 0.0 0.0 7.0 0.0 18.8

23 62.8 3.3 1.7 0.0 9.6 0.0 23.2

24 74.8 1.5 0.0 1.5 4.0 0.0 17.7

25 72.7 7.4 0.0 0.0 0.2 0.5 17.2

RDX 26.4 6.3 3.1 0.0 0.0 24.2 40.0

HMX 44.4 1.3 0.0 0.0 2.9 3.2 48.2

GAP 38.7 0.0 0.0 0.0 0.0 7.0 51.0

HTPB" 10.6 0.0 0.0 0.0 0.0 13.6 0.0

"Also gave 22.7% butadiene monomer, 14.4% butadiene dimer, 2.3% unidentified alkano, 33.2% unidentified
alkene, 3.0% unidentified aromatic.

bAmides, ketones, and aldehydes.
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Table 7. Individual Permanent Gas Pyrolysis Products for Low Temperature Experiments

Sample CH4  CH2O CO2  N20 CO NONo.

Normalized IR Absorbance

4 0.00 0.14 0.45 0.25 0.01 0.03

9 0.03 0.00 0.43 0.38 0.06 0.09

14 0.06 0.00 0.37 0.43 0.06 0.08

17 0.03 0.00 0.38 0.45 0.04 0.09

19 0.00 0.07 0.45 0.34 0.03 0.05

20 0.05 0.00 0.39 0.41 0.07 0.09

21 0.04 0.00 0.40 0.40 0.07 0.09

22 0.07 0.00 0.38 0.41 0.06 0.09

24 0.06 0.00 0.39 0.42 0.06 0.08

25 0.00 0.16 0.32 0.32 0.02 0.05

NOTE: Permanent gas data tabulated only for those samples for which ignition data were available.

Table 8. Individual Permanent Gas Pyrolysis Products for High Temperature Experiments

SampleNo. CH4  CH20 CO2  N2O CO NO

Normalized IR Absorbance

4 0.05 0.00 0.39 0.40 0.07 0.12

9 0.03 0.00 0.43 0.40 0.06 0.08

14 0.08 0.00 0.38 0.47 0.07 0.09

17 0.13 0.00 0.40 0.34 0.05 0.09

19 0.07 0.00 0.40 0.37 0.07 0.10

20 0.06 0.00 0.45 0.33 0.07 0.09

21 0.06 0.00 0.41 0.35 0.07 0.10

22 0.08 0.00 0.39 0.37 0.07 0.10

24 0.08 0.00 0.40 0.33 0.08 0.11

25 0.06 0.00 0.41 0.37 0.07 0.09

NOTE: Permanent gas data tabulated only for those samples for which ignition data were available.

14



permanent gas
9000" corrected retention time: 0 min

7000

6000

50007. acetaldehyde

a a corrected retention time: 1 min
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Figure 3. Example of a GC-FTIR Chromatogram. Sample 18 Pyrolyzed at 1,0000 C.
Permanent Gas and Acetaldehyde Peaks Labelled.
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Figure 4. Example of an FTIR Spectrum Used to Identify Pyrolysis Products. Sample 18
Pyrolyzed at 1,0000 C; Corrected Retention Time = 1 rain-, Peak Assignment:
Acetaldehyde.
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Observed trends in pyrolysis product distributions are listed as follows:

In low temperature pyrolysis experiments:

(1) RDX-based formulations generally gave larger yields of C02 and smaller yields of

N20, CO, NO, and CH4 than HMX-based formulations.

(2) Formaldehyde was observed only for plasticized RDX formulations. Those same

RDX formulations yielded no CH4.

(3) Formulations composed of only GAP and plasticizer (samples 15 and 18) did not

generate formaldehyde.

(4) HMX and all HMX formulations yielded HCN, but neither RDX nor any of the RDX

formulations did.

(5) All samples except 8, 15, and 18 gave water as a pyrolysis product.

(6) Unplasticized formulations had the lowest permanent gas yields (samples 8, 14,

16, and 17).

(7) Samples plasticized with BTTN (9, 19, 20, and 21) had larger permanent gas yields

than those plasticized with TMETN.

(8) Samples with large yields of permanent gases were found to have low yields of

carbonyl compounds.

(9) Nitrates appeared as pyrolysis products for only sample 24 (HMX/GAP/TMETN)

and the four plasticized RDX/GAP formulations (samples 4, 9, 19, and 25).

(10) Plasticized RDX/GAP formulations were the only samples that gave no triazine

(except for samples 15 and 18 which contained no oxidizer and were not expected

to give triazine).
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(11) Isocyanate products did not appear for any HMX based formulations. All but one

RDX-based formulation (sample 16, RDX/HTPB) gave isocyanate pyrolysis

products.

(12) Samples of pure RDX and HMX pyrolyzed at 4000 C and 5000 C, respectively,

gave strikingly different amounts of permanent gases, i.e., RDX -30 area-percent

and HMX -90 area-percent.

In high temperature pyrolysis experiments:

(1) Formulation appeared to have little effect on yields of individual permanent gases.

(2) Plasticized RDX formulations (4, 9, 19, and 25) produced HCN, but unplasticized

RDX formulations (8 and 16) did not.

(3) HCN was produced for all HMX formulations except 17, 21, and 23.

(4) Yields of carboxylic acids and isocyanates were generally larger than in low

temperature experiments.

(5) As in the low temperature experiments, there was an inverse relationship between

the yields of permanent gases and carbonyl compounds.

(6) Nitrates were observed only for sample 24 (HMX/GAP/TMETN).

(7) RDX and HMX both generated a relatively low yield of permanent gas.

(8) RDX and HMX differed greatly in the amount of HNCO produced, i.e., 24.2 and 3.2

area-percent, respectively.

(9) GAP yielded small amounts of total permanent gas, but large amounts of carbonyl

compounds, the majority of which were acetaldehyde and acetone.

17



(10) Most carbonyl products for RDX had retention times of 5 to 9 min. For HMX, most

had times of 11 to 18 min.

(11) The distribution for HTPB consisted primarily of alkenes, including butadiene

monomer, dimer, and several monounsaturated compounds.

(12) For unplasticized samples (8, 14, and 16) levels of permanent gases, including

HCN and H20, were higher than in low temperature experiments.

(13) The permanent gas level for samples 15 and 18 (50% GAP/50% plasticizer) were

much lower than for low temperature experiments.

(14) For plasticized samples (with an oxidizer), the permanent gas level in high and low

temperature experiments generally differed by less than 10 area-percent.

(15) All samples containing either RDX or HMX generated triazine as a pyrolysis

product.

32 Selection of Performance Data for Correlation With Pyrolysis Products., The

performance test results provided by NWC are given in Table 9. They consist of impact

sensitivity and bum rate measurements as well as "first light! and "go/no-go" ignition times.

First light measurements indicate initial emission whereas go/no-go measurements indicate

the time of laser stimulus necessary for 50% of the samples to sustain combustion after

removal of the stimulus. Theoretical specific impulse was also provided. Plots of bum rate

and impact sensitivity vs. specific impulse (Figures 5 and 6, respectively) indicate a strong

correlation and suggest that these two measurements are thermodynamically controlled. First

light and go/no-go ignition times (Figures 7 and 8, respectively) do not show such a correla-

tion and are therefore not believed to be thermodynamically controlled, making them suitable

choices for possible correlations with pyrolysis product distributions.
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3.3 Correlation of Pyrolysis Products and lanition Data. To identify correlations, several

techniques and tools were used. These include simple visual examination of P-GC-FTIR data

in formats similar to those used for Tables 3 and 4, as well as a multitude of plots generated

by a spreadsheet program (Symphony) and two multivariate analysis packages (Ein*Slght and

Minitab). Possible correlations for all pyrolysis products vs. all Ignition data were explored.

Plots of percent pyrolysis product for total permanent gases and carbonyl compounds vs.

ignition time (flux: 60 cal/m2s) are given in Figures 9 and 10, respectively. The best

correlation is observed for total permanent gases (low temperature products) vs. low flux

(60 cal/m2s) go/no-go ignition times. Fairly good correlations with go/no-go times are also

observed for the carbonyl compounds. The most general explanation for these results is that

cleaner burning samples produce more small decomposition products (like permanent gases)

than large fragments (such as carbonyl compounds), resulting in shorter go/no-go ignition

times due to higher surface temperatures.

Correlation of total permanent gases production with go/no-go ignition times at laser fluxes

>60 cal/m2s were also observed, but were not as good as that for the lowest laser flux

presumably due to ablation and/or overdriven ignition (Cosgrove and Owen 1974), at the

higher fluxes. No significant correlations were observed for any of the high temperature

pyrolysis products when plotted against either go/no-go or first light ignition times, nor were

any observed for low temperature products when plotted against first light ignition times.

Differences between high and low temperature pyrolysis product distributions are discussed

above, but do not explain the lack of correlation with first light ignition times.

4. DISCUSSION

There are several striking differences in the low temperature pyrolysis product distributions

for RDX and HMX formulations. Most are likely due to differences in reaction temperature.

All RDX-based formulations were pyrolyzed at a set temperature that was 1000 C lower than

for HMX formulations. This was done to compensate for the difference in oxidizer melting

points (2040 C and 2800 C for RDX and HMX, respectively). Since HMX and RDX rapidly

decompose at their melting points, HMX is at a temperature almost 1000 C higher than RDX

when it actually melts. This could explain the large difference in permament gas yields

between RDX and HMX, i.e., 29.9 and 92.1 area-percent, respectively. Based on the notion
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that N-N bond rupture dominates at higher temperatures and that C-N rupture dominates at

lower temperatures, this may also explain why In low temperature pyrolysis experiments RDX

formulations generate formaldehyde while HMX formulations do not, and similarly why HMX

formulations generate HCN while RDX formulations do not.

Examination of go/no-go ignition times as a function of laser flux suggests that samples

can be divided into three groups (see Figures 11-13). Group I (samples 14, 22, 25, and 24)

exhibits increasing go/no-go times with increasing flux. Group II (samples 20, 21, 4, 9,

and 19) has ignition times that first decrease and then increase with increasing flux. (ignition

times at a flux of 200 cal/m 2s for HMX formulations increase to values larger than those at

60 cal/m2s while ignition times at 200 cal/m2s for the RDX formulations in this group increase

to values smaller than those at 60 cal/m2s). Group III is composed only of sample 17 (the

unplasticized sample formulated with HTPB) and exhibits go/no-go ignition times that

decrease with increasing laser flux. Observations described below suggest that differences in

ignition behavior exhibited by these groups are related to ablation and/or overdriven ignition at

high laser fluxes, as well as to the ability of plasticizer and/or plasticizer decomposition

products to catalyze propellant decomposition. Pyrolysis GC-FTIR investigation of BTTN and

TMETN decomposition at 4000 C reveals the production of permanent gases, including a

relatively large amount of formaldehyde, as well as several nitrate ester fragments. Which, if

any, of these products may serve as catalysts has not been determined, though formaldehyde

has been reported to catalyze the thermal decomposition of RDX (Batten 1971 a, 1971 b;

Liebman et al. 1987). Further evidence of catalysis by plasticizer and/or plasticizer

decomposition products is the observation that wh~!e triazine is produced for HMX formulations

and unplasticized RDX formulations in low temperature experiments, as well as for all HMX

and RDX formulations in high temperature experiments, no triazine is produced for plasticized

R :)X formulations at low temperature. Based on a comparison of the amount of nitrate

fragments produced as a result of low and high temperature pyrolysis ("RN0 3" in Tables 5

and 6), it appears that plasticizer decomposition is more complete for high temperature

pyrolysis. Other than sample 24 (HMX/GAP/TMETN), the only samples giving nitrate

decomposition products are the plasticized RDX formulations (4, 9, 19, and 25), and they do

so only when pyrolyzed at low temperature. These same formulations happen to be the same

samples that do not give triazine. These observations seem to suggest catalytic properties of

nitrates (see Scheme 1). In a related study that examined the thermal decomposition of RDX
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with GC-MS (Uebman et ai. 1987), it was found that the presence of borohydride catalysts

eliminated both triazine oxide and NO2 from the decomposition products.

It Is observed that Group I contains an unplasticized formulation (sample 14) and TMETN

plasticized formulations, but no BTTN plasticized formulations. Group Il is composed almost

exclusively of BTTN plasticized formulations (the one TMETN plasticized sample in Group II,

sample 4, differs from other TMETN samples in that it is formulated with only about one-third

the amount of GAP).

Although both BTTN and TMETN are both energetic plasticizers, BTTN is the more

sensitive of the two as evidenced by the impact sensitivities for samples 15 (GAP/BTTN)

and 18 (GAP/TMETN), i.e., 33.9 and 51.3 cm, respectively (Table 9). It is conceivable that

since BTTN is the more sensitive plasticizer, it will decompose more readily at lower laser

fluxes than will TMETN. Its decomposition products will then be available to catalyze

decomposition of the rest of the sample. At high laser fluxes, increased temperatures

encourage more rapid, but perhaps less efficient, decomposition of the entire formulation. At

sufficient flux, material will ablate from the sample and remove heat from the reaction zone,

resulting in the increased ignition times observed for Group I at all fluxes and Group II at high

fluxes.

Similar reasoning may explain the production of acetaldehyde (CH3CHO) by samples 15,

18 and GAP in high temperature experiments (Table 8), retention time: 1.5 min), but by only

sample 18 in low temperature experiments (Table 7), note that GAP was not pyrolyzed at low

temperature. In the low temperature experiment, sample 15 (GAP/BT-TN) produces large

amounts of permanent gases, but no acetaldehyde, indicating more complete decomposition

of GAP than for sample 18 (GAP/TMETN) which produces a significant amount of

acetaldehyde and almost 20% less permanent gases. In high temperature experiments,

where decomposition is probably instantaneous, plasticizer does not have the opportunity to

catalyze GAP decomposition. The result is that samples 15 and 18 decompose less efficiently

and generate almost as much acetaldehyde as unplasticized GAP (22.4, 15.5, and 28.1%,

respectively for samples 15, 18, and GAP). Samples 15 and 18 also generate relatively small

amounts of permanent gases, though more than does unplasticized GAP (59.6, 43.7, and

38.7%, respectively for samples 15, 18, and GAP).
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The observation that samples plasticized with BTTN tend to have shorter first light times

than unplasticized formulations or those plasticized with TMETN (Table 9) may lend further

support to the ideas proposed here.

Sample 17 does not fit into either Group I or II. It is the only sample that demonstrates

decreasing Ignition times with increasing flux. This suggests that ablation is not a problem for

this unplasticized, HTPB-bound formulation. Two additional unplasticized, HTPB-bound

samples (Yee, private communication) prepared along with those in this study, but not

examined by us, show a similar trend and indicate that the behavior is not unique to

sample 17, but rather is a characteristic of HTPB-bound formulations.

5. CONCLUSION

The primary objective of this investigation was to identify correlations between ignition

times and pyrolysis product distributions. Such correlations have been found for go/no-go

ignition times, but not for first light ignition times. The reason for lack of correlation with first

light measurements is not clear. An explanation is not necessary for a non-mechanistic study

such as this, but would contribute to a more complete understanding of the systems being

examined. The correlations that have been identified, namely those of total permanent gases

and carbonyl compounds, provide a means for predicting go/no-go ignition times and may be

used for small scale screenings of new formulations.

Several trends in pyrolysis product distribution as a function of propellant composition have

been observed. Most of these trends are believed to be related to the ability of BTTN and

TMETN to catalyze decomposition. Although not directiy applicable to performance

prediction, the trends and observations reported here are expected to be of interest for those

interested in formulation design or propellant decomposition.
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APPENDIX:

GC-FTIR DATA FOR UNIDENTIFIED PYROLYSIS PRODUCTS
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INTENTIONALLY LEFT BLANK.
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As discussed in the body of this report, many pyrolysis products could not be identified

and are described only by their functionality (i.e., nitro and carbonyt compounds, nitrates,

isocyanates). To provide more complete information for future reference, spectra of

unidentified products are presented in this appendix. Tables summarizing spectra and

associated samples are also given.
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Spectrum 36 is typical of the isocyanates produced by this propellant series. In many
cases, the RNCO band overlaps with other bands, in this case with formic acid. Identification

of the compound is further complicated by the spectral similarities of different isocyanates.

The three model isocyanate spectra below illustrate this point.

Spectrum 36 0]2
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Table A-1. Summary of Samples Having Carbonyl Pyrolysis
Spectra Presented in the Appendix

Spectrum Sample Pyrolysis Retention
No. Identity No. Temp Time

(°C) (min)

Unknown RDX 400/500 2.8
19 3.5
14 11.5
17 11.0
20 11.0
22 11.5
23 13.5
24 11.3

RDX 1,000 3.0
HMX 11.5

4 14.5
14 12.0
16 12.8
17 7.5
19 16.5
20 8.0
24 8.4

2 Unknown RDX 400/500 3.4

25 1,000 14.7

3 Unknown RDX 400/500 3.6
14 12.3
16 9.0

RDX 1,000 3.7
GAP 11.7

19 4.5
23 14.7

4 Unknown RDX 400/500 4.5
16 4.6

RDX 1,000 4.2
15 2.5
17 6.3
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Table A-1. Summary of Samples Having Carbonyl Pyrolysis
Spectra Presented In the Appendix (continued)

Spectrum Sample Pyrolysis Retention
No. Identity No. Temp Time

(OC) (min)

5 Unknown RDX 400/500 5.4
25 8.3

20 1,000 9.5

6 Unknown RDX 400/500 5.6

HMX 1,000 14.6
25 13.7

7 Unknown RDX 400/500 6.8

22 1,000 9.0
24 10.4

8 Unknown ROX 400/500 8.0

9 Unknown RDX 400/500 8.7
9 9.4, 13.0

14 6.0
22 10.0

10 Acetaride? GAP 1,000 12.1
17 8.4
20 9.0
21 8.5
22 8.6
23 8.8

11 Unknown 20 1,000 15.3
22 13.0
23 13.1

12 Triacetin? 4 400/500 6.0, 9.5
15 10.4
16 11.5
18 8.4
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Table A-1. Summary of Samples Having Carbonyl Pyrolysis
Spectra Presented In the Appendix (continued)

Spectrum Sample Pyrolysis Retention
No. Identity No. Temp Time

(°C) (min)

12 Trlacetln? 18 1,000 13.0
23 13.0
24 12.6

13 Unknown 8 400/500 4.7

9 1,000 10.0

14 Unknown 17 400/500 12.3
16 5.9

21 1,000 7.5
22 8.0
23 8.1
24 7.3

15 Unknown 16 400/500 6.9

9 1,000 12.5
16 1.4

16 Unknown 15 400/500 12.6
20 12.1

21 1,000 9.5, 14.7
23 9.6, 12.2

17 Unknown 21 400/500 10.8, 12.0

9 1,000 9.5
21 10.5

18 Unknown HMX 1,000 20.3
17 13.0
18 8.0
21 13.3
24 8.1, 17.4

19 Unknown 17 1,000 14.2
18 11.0
20 10.5
23 10.2
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Table A-2. Summary of Spectra of Carbonyl Pyrolysis Products for Propellant Samples

Sample Low Temperature High Temperature
No. Pyrolysis Spectra Pyrolysis Spectra

4 12 ............................................. 1

8 13 ............................................. 20

9 9 .................................................... 13, 15,20

14 1,2,9 ............................................ 1

15 12, 16 ....................................... 4

16 2. 4,12,14,15 ............................. 1,15

17 1,14 .............................................. 1, 4,10,18,19

18 12 .................................................. 12, 18, 19

19 1 .................................................... 1,2

20 1,16 .............................................. 1,5,11,19

21 17 .................................................. 10, 14, 16, 17, 18,

22 1,9 ................................................ 7,11,14

23 1 .................................................... 2, 9,11, 12,14,16,19

24 1 .................................................... 1, 7. 12,14, 18

25 5 .............................................. 6

RDX 1,2,3,4,5,6,7,8,9 .................. 1,2,3,4

HMX -. ................................................... 1,6,18

GAP -. ................................................... 2,10

HTPB -. ................................................... -
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Table A-3. Summary of Spectra of Nitro (RNO2) Pyrolysis Products for Propellant Samples

Spectrum Identity Sample Pyrolysis Retention
No. No. Temperature Time

(OC) (min)

22 Nitromethane RDX 400/500 6.0

9 4.0
14 5.0
18 

5.0

22 5.0
24 4.5

18 1,000 5.0

23 Nitroformamine? 9 400/500 13.5
14 16.5
16 8.0
17 16.5

8 1,000 10.5
17 10.5
20 11.5
21 10.5
23 11.5

24 Unknown RDX 400/500 1.0

RDX 1,000 1.0
16 3.5

25 Unknown 18 1,000 8.5

Table A-4. Summary of Spectra of Nitrate (RNO 3) Pyrolysis Products for Propellant Samples

Spectrum Sample Pyrolysis Retention
No. Identity No. Temperature Time

(°C) (min)

27 Unknown 4 400/500 7.5

28 Unknown 4 400/500 11.9

30 Unknown 19 400/500 5.2

31 Unknown 19 400/500 5.9

32 Unknown 24 400/500 12.5

L 33 Unknown 25 4001500 4.0

34 Unknown 25 400/500 5.5
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LIST OF ABBREVIATIONS

BAMO/AMMO 3,3-bis(azidomethyl)oxetane/3-azidomethyl-3-methyl oxetane copolymer

BAMO/THF 3,3-bis(azidomethyl)oxetane/tetrahydrofuran copolymer

BTTN 1,2,4-butane trinitrate

GAP glycidyl azide polymer

GC gas chromatography

HMX cyclotetramethylenetetranitramine

HTPB hydroxy-terminated polybutadiene

Isp specific impulse

LOVA low vulnerability ammunition

MCT mercury-cadmium-telluride (infrared detector)

m/z mass to charge ratio (in mass spectrometry)

N-100 trade designation for a polyfunctional isocyanate, manufactured by
Mobay

NWC Naval Weapons Center

P-GC-FTIR pyrolysis-gas chromatography-Fourier transform infrared

RDX cyclotrimethylenetrinitramine

TMETN trimethlyolethane trinitrate

Pyrolysis product notation (used in Tables 3 through 6):

C=O compound containing a carbonyl functional group (includes aldehydes,
amides, and ketones)

PG permanent gases (includes CH4, CHO, CO, C02, NO, and N20)

RCH=NH compound containing an imine functional group

RCOOH compound containing a carboxylic acid functional group

RNCO compound containing an isocyanate functional group
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RN03 compound containing a nitrate functional group

RN02 compound containing a nitro functional group
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